Как определить класс точности прибора. Класс точности вольтметра как определить


Как определить класс точности прибора

Класс точности является одной из основных колляций всякого измерительного прибора. Для всего класса существует определенный размер возможной погрешности. Всякие измерения проводятся для того, дабы получить особенно подлинные данные о физических данных объекта. Измерительный прибор должен соответствовать поставленной задаче. При оценке его качества нужно учесть несколько параметров, в том числе и класс точности .

Вам понадобится

  • — прибор;
  • — нормативная документация на прибор.

Инструкция

1. Класс точности прибора традиционно указывается на шкале. Он указывается и в инструкции, которая прилагается к прибору. Посмотрите, какими символами он обозначен. Это могут быть прописные латинские буквы, римские либо арабские цифры. В последнем случае добавляется какой-нибудь добавочный символ.

2. Если класс точности обозначен латинской маркировкой, это обозначает, что определяется он по безусловной погрешности. Арабские цифры без дополнительных значков свидетельствуют о том, что определяющей является приведенная погрешность, при этом учитывается наивысшее либо минимальное значение потенциального измерения. Дополнительным значком может быть, скажем, галочка. В этом случае также определение класса идет по приведенной погрешности, впрочем на основании длины шкалы. При определении класс по относительной погрешности проставляются римские цифры.

3. Прибор может не иметь никакой маркировки. Это значит, что погрешность может составлять больше 4%, то есть пользоваться им дозволено только для дюже примерных измерений. В этом случае размер погрешности установите сами. Он примерно равен половине цены деления. При этом итог измерения может быть как огромнее правдивого на размер погрешности, так и поменьше. Маркировка должна соответствовать государственным эталонам.

4. Вычислите погрешность. Класс точности определяется как отношение той либо другой погрешности к точному значению. Скажем, безусловную дозволено представить в виде разности между точным и примерным значениями х и а, то есть в виде формулы s=(x-a) Относительная определяется как отношение этой же разнице к величине а, а приведенная – к длине шкалы l. Умножьте полученный итог на 100%.

5. Существует восемь классов точности стрелочных приборов. Они определяются по приведенной погрешности. Делятся они на прецизионные и технические. Первые используются для точных измерений – скажем, в лабораториях. Диапазон погрешностей у этих классов – от 0,05 до 0,5.Приборы, относящиеся ко 2-й категории, Они могут давать погрешность от 1,0 до 4, 0. При этом по каждой длине шкалы расхождение между данными измерения и фактическим значением одно и то же.

Для верного определения параметров источника тока изредка нужно повысить точность измерения его электродвижущей силы. Для этого следует применять вольтметры больше высокого класса точности либо же применять особые схемы на усилителях непрерывного тока. Если на входе такого усилителя будет установлен полевой транзистор, входное сопротивление усилителя будет дюже крупно по сопоставлению с выходным сопротивлением источника тока и погрешность при измерении будет жалка.

Вам понадобится

  • — 2 транзистора КП103К;
  • — 2 резистора 3,6 кОм;
  • — резистор 4,7 кОм;
  • — резистор 4,7 мОм;
  • — резистор 2 кОм;
  • — переменный резистор 10 кОм;
  • — подстроечный резистор 51 кОм;
  • — выключатель;
  • — соединительные провода;
  • — паяльник 25 Ватт;
  • — канифоль и олово;
  • — вольтметр.

Инструкция

1. Спаяйте одним итогом совместно резисторы 4,7 мОм, 4,7 кОм и 2 кОм. Спаяйте совместно стоки транзисторов и 2-й итог резистора 2 кОм. Затвор первого транзистора припаяйте к свободному итогу резистора 4,7 мОм, а затвор второго транзистора припаяйте к свободному итогу резистора 4,7 кОм.

Схема калибровочного вольтметра

2. Итог ползунка переменного резистора 10 кОм припаяйте к итогу выключателя питания. Свободные итоги переменного резистора 10 кОм припаяйте к резисторам 3,6 кОм. Вольный итог резистора 3,6 кОм, подстроечного резистора 51 кОм и исток первого транзистора спаяйте совместно. Припаяйте вольный итог второго резистора 3,6 кОм к истоку второго транзистора.

3. Спаяйте совместно свободные итоги подстроечного резистора 51 кОм и подключите к негативному итогу вольтметра. Позитивный итог вольтметра подключите к истоку второго транзистора. Вольтметр включите в диапазоне измерения напряжения от 0 до 1 Вольта.

4. Вольный итог выключателя подсоедините к негативному итогу батареи питания. Позитивный итог припаяйте к спаянным совместно итогам резисторов 4,7 мОм, 2 кОм и 4,7 кОм. Батарею питания сделайте из объединенных ступенчато 3 элементов 3336 напряжением 4,5 Вольт. Усилитель сберегает работоспособность при падении напряжения батареи до 9 Вольт.

5. Данный усилитель рассчитан на измерение непрерывного напряжения в пределах от 0 до 1 Вольта. Входное сопротивление огромнее 4 мОм. Для измерения крупных напряжений изготовьте высокоомные делители напряжения: для измерения напряжений в пределах 10, 100 и 1000 Вольт 1:10, 1:100 и 1:1000 соответственно.

6. Для монтажа усилителя (исключительно делителей) используйте материал с высокими изоляционными свойствами. Для делителей изготовьте обособленный корпус. Для проверки напряжения питания усилителя изготовьте обособленный делитель с соотношением 1:15. Смонтируйте его в том же корпусе, что и усилитель. Установите кнопку без фиксации, работающую на замыкание. Через эту кнопку подключите делитель к входу усилителя. Сейчас вы в всякий момент сумеете проверить состояние батареи.

Видео по теме

Обратите внимание! Способы измерений на точность не влияют. Разумеется, всем прибором нужно пользоваться в соответствии с его назначением и инструкцией. Данные для измерения объекта обязаны соответствовать установленным эталонам – скажем, принятым показателям температуры и влажности.

jprosto.ru

Задачи метрологии (2)

Задача 1. Вольтметр класса точности 0,5 имеет диапазон измерений от 0 до 100 В. Определить допускаемую абсолютную и относительную погрешность, если стрелка вольтметра остановилась на делении шкалы против цифры 30 В.

Решение:

Абсолютная погрешность:

где – класс точности вольтметра;– верхний предел вольтметра.

Относительная погрешность:

где – абсолютная погрешность вольтметра;– значение вольтметра.

Ответ: Допустимая абсолютная погрешность вольтметра . Допустимая относительная погрешность вольтметра.

Задача 2. Двумя амперметрами на 20 А был измерен ток на выходе трансформатора. Первый имеет погрешность 1% от верхнего предела и показал 4 А, а второй имеет погрешность 2% от верхнего предела и показал 3,98 А. Найти относительную погрешность второго амперметра.

Решение:

Абсолютная погрешность измерения этого амперметра составляет:

Относительная погрешность второго амперметра:

Ответ: Относительная погрешность второго амперметра равна –0,5%.

Задача 3. Пользуясь правилом округления, как следует записать результаты 148935 и 575,3455, если первая из заменяемых цифр является пятой по счету (слева направо)?

Ответ: Если первая (слева направо) из заменяемых нулями и отбрасываемых цифр меньше 5, остающиеся цифры не изменяются, т. е. 148900 и 575,3.

Задача 4. 1 аршин равен 2/3 м с погрешностью 6,7%. В обиходе пользуются еще соотношением 1 м = 1,5 аршина. Зная, что 1 аршин 0,7112 м, определите погрешность последнего допущения.

Решение:

Погрешность измерения при первом допущении составляет 0,04467 единиц. При этом допущение можно написать следующим образом – 1 аршин = (2/3±0,045) м. Однако величина второго допущения может быть расписана следующим образом: 1 аршин = 0,7112 м = (2/3+0,045). Из этого делаем вывод, что погрешность последнего допущения составляет также 6,7%.

Ответ: Погрешность последнего допущения составляет 6,7%.

Задача 1. Определить вероятность внезапного отказа измерительного преобразователя за 1000 ч работы, если он состоит из 5 резисторов с интенсивностью отказов и 2 конденсаторов с .

Решение:

Интенсивность отказов измерительного преобразователя:

;

.

Вероятность безотказной работы за 1000 ч:

Вероятность отказа за 1000 ч:

Ответ: Вероятность внезапного отказа измерительного преобразования равна 0,05.

Задача 2. Определить пригодность вольтметра класса точности 1,0 с диапазоном измерений от 0 до 200 В, если при непосредственном сличении его показаний с показаниями образцового вольтметра были получены следующие данные:

Рабочий, В

25

50

75

100

150

175

200

Образцовый, В

24,9

51,5

77,9

101,5

149,9

174,5

199,9

Образцовый вольтметр имеет систематическую погрешность 0,5 В.

Решение:

По условию приведенная погрешность γ=1,0%.

77,9-75=2,9 В

Ответ: Вольтметр непригоден для использования, так как погрешность измерения превышает класс точности (погрешность измерения не может превышать допустимую, которая равна 2 В).

Задача 3. Для измерения тока от 20 А до 60 А с относительной погрешностью, не превышающей 2%, был заказан амперметр с верхним пределом измерения 100 А и классом точности 0,5. Удовлетворяет ли он поставленным условиям?

Решение:

(измеренное значение тока берем в начале шкалы, так как в начале шкалы относительная погрешность измерения больше).

что соответствует классу точности 0,5.

Ответ: Амперметр с верхним пределом измерения 100 А и классом точности 0,5 удовлетворяет поставленным условиям.

Задача 4. Электроизмерительный преобразователь состоит из 2 транзисторов с интенсивностью отказов , 3 керамических сопротивлений с и 8 резисторов с . Определить вероятность безотказной работы этого средства измерений за 1000 ч работы.

Решение:

Интенсивность отказов электроизмерительного преобразователя:

;

.

Вероятность безотказной работы за 1000 ч:

Ответ: Вероятность безотказной работы электроизмерительного преобразователя равна 0,9.

studfiles.net

Пример 1

Пример 1. Определить класс точности амперметра с конечным значением шкалы Iк=1,0 мА для измерения тока в диапазоне от 0,2 до 1,0 мА так, чтобы относительная погрешность δ1 не превышала 1%.

Решение:

Из относительной погрешности δ выразим абсолютную погрешность

===0,002 мА.

Измеренное значение тока –x, берём в начале шкалы, т.к. в начале шкалы относительная погрешность измерения больше.

γ===0,2% .

Нормированное значение - xN, берём в конце шкалы.

Ответ: класс точности амперметра 0,2%.

Пример 3. Определить класс точности вольтметра с конечным значением диапазона измерения Uк=300 В, если предел абсолютной погрешности измерения напряжения этим прибором равен =±0,5 В.

Решение:

Т.к. нам известна абсолютная погрешность, мы можем найти приведённую погрешность, приняв за нормированное значение xN конечное значение диапазона измерения Uк.

γ===0,2 %.

Ответ: класс точности вольтметра 0,2%.

Пример 4. Класс точности СИ 0,5/0,1. Записать выражение для относительной погрешности СИ и определить относительную погрешность для середины и края диапазона измерения.

Решение:

δ=[c+d·(-1)] =[0,5+0,1·(-1)]

δсеред.=[0,5+0,1·(-1)]= [0,5+0,1·(-1)]=0,6

δкрая.=[0,5+0,1·(-1)]= [0,5+0,1·(-1)]=0,5

Ответ: относительную погрешность для середины δсеред.=0,6 и относительную погрешность края диапазона измерения δкрая.=0,5.

Пример 8. Указатель относительного устройства амперметра класса точности 0,02/0,01 показывает минус 26 А. Шкала амперметра имеет конечные значения ±50 А с нулём в центре шкалы. Цена деления шкалы 1 А. Оценить результат измерения.

Решение:

По условию c/d=0,02/0,01, x=-26 А, xк=±50 А.

Из относительной погрешности δ выразим абсолютную погрешность

=.

δ=[c+d·(-1)]

== ±0,002 А.

Ответ: погрешность измерения амперметра составила ((-26) ±0,002) А.

studfiles.net

Классы точности средства измерений

Класс точности средства измерений, как правило, выражается пределами допускаемых основной и дополнительной погрешностей, а также другими характеристиками, влияющими на точность.

Пределы допускаемых значений основной и дополнительной погрешностей могут быть выражены в форме абсолютной, относительной или приведенной погрешностей. Это зависит от характера изменения погрешностей средства измерений в пределах диапазона измерений и условий его применения и назначения.

Пределы допускаемой абсолютной погрешности определяются в виде

или

Dx = ±а ±b,

 

где а и b – положительные числа; х – значения измеряемой величины.

Пределы допускаемой основной относительной погрешности определяются по формуле:

где q – положительное число, если Dx определяется по выражению

где xk – больший (по модулю) из пределов измерений для заданного диапазона средства измерений:

Пределы допускаемой основной приведенной погрешности, %, определяются по формуле.

где Dх – пределы допускаемой абсолютной погрешности, определяемые по формуле; р — положительное число, выбираемое из ряда предпочтительных чисел: 1·10n; 1,5·10n; 2·10n; 2,5·10n; 4·10n; 5·10n; 6·10n; (n= 1; 0; -1; -2; -3; …).

Числа с, d, q и р определяют значение класса точности измерительного средства измерений.

Классы точности средств измерений обозначаются условными знакам (буквами, цифрами). Для средств измерений, пределы допускаемой основной погрешности которых выражают в форме приведенной погрешности или относительной погрешности, классы точности обозначаются числами, равными этим пределам в процентах.

Шкала мультиметра

Чтобы отличить относительную погрешность от приведенной, обозначение класса точности в виде относительной погрешности обводят кружком, например

Значение приведенной погрешности кружком не обводят, например 2,5.

Если погрешность нормирована в процентах от длины шкалы, то под обозначением класса ставится знак Ú.

Если погрешность нормирована в соответствии формулой (59), то класс точности обозначается как c/d, например 0,02/0,01.

Пример 1.На шкале амперметра с пределами измерения 0…10 А нанесено обозначение класса точности 2,5. Это означает, что для данного прибора нормирована приведенная погрешность. Подставляя в формулу

результаты задания xн = 10А и значение p = 2,5 можем рассчитать абсолютную погрешность:

В случае если бы обозначение класса точности было в виде

, то погрешность следовало бы вычислить в процентах от измеренного значения.

Так, при показаниях по шкале Iизм. = 2А, погрешность прибора не должна превышать

При показаниях по шкале Iизм=7А погрешность будет иной:

Обозначение классов точности средств измерений

(извлечения из ГОСТ 8.401-81)

 

Классы точности приборов, нормируемые по стандарту. Верхний ряд – класс точности для приборов, имеющих только мультипликативную погрешность, который равен пределу допускаемой относительной погрешности, которая вычисляется в процентах от измеренного значения.

Нижний ряд – класс точности, выражаемый в форме приведённой или относительной погрешности.

 

Зная класс точности средства измерений можно из выражения

или

определить предельное значение допускаемой основной погрешности Δх. В этом случае можно утверждать, что действительное значение измеряемой физической величины находится в интервале

х = х*±Dх ,

где x* — показание средства измерений.

Примеры обозначения классов точности приведены в таблице.

 

Пример 2.Для прибора класса точности 0,05/0,02, с диапазоном измерения 0…15А определить абсолютную погрешность измерения при показании по шкале 7А. В данном примере класс точности задан как c/d в соответствии с формулой (59), которая может быть представлена в виде

где xk=15А; х=7А; с=0,05; d=0,02.

Нормирующее значение xN=xk=15A,

 

Кроме рассмотренных, по шкале прибора определяются и другие характеристики в соответствии с таблицей приведённой ниже

Магнитоэлектрические приборы

1 – полюсный магнит, создающий магнитное поле, 2 – полюсные наконечники, 3 – неподвижный стальной цилиндр, служащий для уменьшения сопротивления магнитной цепи. Между полюсными наконечниками и цилиндром создаётся равномерное магнитное поле. Катушка 5, намотанная на рамку 4, под действием сигнала может поворачиваться вокруг оси 6, установленной на подшипниках 7 . На оси жёстко установлена стрелка 8. Противодействующий момент создают пружины 9, служащие для подвода сигнала к обмотке прибора.

Магнитоэлектрические измерительные механизмы применяются в следующих приборах.

1. Амперметрах и вольтметрах постоянного тока. Диапазон измеряемых величин от 0.01 мА и 0.1 мВ до ≈ 10 кА и ≈ 100 кВ.

2. Омметрах. Диапазон измеряемых величин от ≈ 1000 Ом (последовательная схема соединения) до ≈ 100 Мом (параллельная схема соединения).

3. Гальванометрах для применения в качестве нуль-индикаторов, измерения малых токов, напряжений и количества электричества.

4. Магнитоэлектрических логометрах, в которых противодействующий момент создаётся не пружиной, а электрическим путём.

 

 

Электромагнитные приборы.

Измеряемый ток I протекает по катушке 1. При этом в неё втягивается ферромагнитный сердечник 2, закреплённый с эксцентриситетом на оси 3, на которой жёстко установлена стрелка 4. Отсчёт производится по шкале 5. Противодействующий момент создаётся пружиной 6. Для успокоения колебаний стрелки служит воздушный демпфер – 7.

Электромагнитные измерительные механизмы применяются в амперметрахи вольтметрахдля измерения токовинапряжений промышленной частоты. Причём, эти приборы могут работать в цепях как постоянного, так и переменного тока.

Промышленностью выпускаются приборы:

1. Переносные и щитовые амперметрыклассов точности 0,5; 1,5; 2,5 для измерений малых токов ( от 5 мА до 10 А по верхнему пределу) и больших токов ( от 300 А до 10 кА по верхнему пределу измерения) при частоте до 1500 Гц.

2. Переносные и щитовые вольтметрыклассов точности 0,5; 1,5; 2,5 с верхними пределами измерений от 0,5… 600 кВ в диапазонах частот 45…1000 Гц.

 

Электростатические измерительные приборы.

Под действием разности потенциалов подвижный электрод (пластины 1) втягиваются между неподвижными пластинами 2. Активная поверхность взаимодействия пластин при этом изменяется. Таким образом, ось прибора 3 поворачивается, и по стрелке 5 отсчитывают показания на шкале 6. Для демпфирования колебаний служит пружина 4. Зеркальце 7, установленное на подвижной оси, служит для увеличения чувствительности прибора.

Электростатический принцип применяется главным образом в приборах для измерения напряжения – вольтметрах. Эти приборы применяются в цепях переменного и постоянного тока.

Вольтметрывыпускаются с верхними пределами измерений 30В…75кВ классов точности 0,5; 1,0; 1,5 для работы частот 30 МГц.

 

Электродинамические приборы.

1 – две подвижные последовательно соединённые катушки, разделённые воздушным зазором. Ток подводится к подвижной катушке 2 через пружинки 4, создающие в то же время противодействующий момент. На оси 3 жёстко закреплена стрелка 5, в соответствии с положением которой отсчитывается показание прибора по шкале 6. В обесточенном положении подвижная катушка обычно находится под углом 135̊ к горизонту.

Электродинамический принцип применяется в приборах для измерений тока, напряжения и мощности, а также счётчиках.

1. Амперметры выпускаются с верхними пределами измерений от 5 мА до 20 А классов точности 0,1 и 0,2 в частотном диапазоне до 1500 Гц.

2. Вольтметры ( многопредельные) выпускаются с верхними пределами измерений от 1,5 до 600 В классов точности 0,1 и 0,2 в диапазоне частот до 1500 В.

3. Ваттметры, использующие электродинамический принцип, выпускаются в переносных вариантах. Классы точности: 0,1; 0,2; 0,5 с несколькими верхними пределами измерения тока и напряжения. Чаще для тока 5 и 10 А, а для напряжения 30, 75, 150, 300, 450 и 600 В. Их используют для измерений мощности постоянного и переменного тока.

4. Счётчики электрической энергии постоянного тока электродинамические. Отсчёт энергии производится по показаниям числа оборотов подвижной части измерительного механизма, градуированного в кВт∙ч.

5. Электродинамические логометры – используются для в приборах для измерения сдвига фаз между током и напряжением под нагрузкой и коэффициента мощности cos φ. Такие приборы называют – фазометрами.

 

Ферродинамические приборы

 

Ферродинамические приборы отличаются от электродинамических тем, что неподвижная катушка 1 в них расположена на сердечнике из ферромагнитного материала. Подвижная катушка 2 располагается на сердечнике 4, а на оси установлена пружина 3.

 

На ферродинамическом принципе основано действие приборов для измерения мощности, а также счётчиков постоянного тока. Ферродинамические амперметры и вольтметры в настоящее время сняты с производства и промышленностью не выпускаются.

 

1. Ваттметры на ферродинамическом принципе выпускаются классов точности 0,2; 0,5; 1,0. Главным образом такие приборы применяют для измерения параметров переменного тока. Для постоянного тока такие приборы – не применяются.

2. Счётчики электрической энергии постоянного тока ферродинамические. Отсчёт энергии производится по показаниям числа оборотов подвижной части измерительного механизма, градуированного в кВт∙ч также как в электродинамических счётчиках.

 

Индукционные приборы

В результате взаимодействия вихревых токов, возникающих в неподвижных электромагнитах 2 и 3, алюминиевый диск 4 поворачивается вокруг оси. Противодействующий момент создаётся спиральной пружиной 1.

На индукционном принципе основано действие счётчиков электроэнергии переменного тока.

1. Индукционные счётчики электрической энергии переменного тока. Выпускаются однофазные и трёхфазные счётчики активной (классы точности 0,5; 1,0; 2.) и реактивной энергии (классы точности 1,5; 2,0; 3.0).

Похожие статьи:

poznayka.org

ПОГРЕШНОСТИ И КЛАССЫ ТОЧНОСТИ ЭЛЕКТРОИЗМЕРИТЕЛЬНЫХ ПРИБОРОВ

ПОГРЕШНОСТИ И КЛАССЫ ТОЧНОСТИ ЭЛЕКТРОИЗМЕРИТЕЛЬНЫХ ПРИБОРОВ

Измеренная прибором величина всегда отличается от истинного значения на некоторое число, называемое погрешностью прибора. Погрешности измерительных приборов определяют поверкой, т. е. сравнением показаний по­веряемого прибора с показаниями более точного, образцового прибора при измерении ими од­ной и той же величины. Значение измеряемой величины, определенное по образцовому прибо­ру, принято считать действительным. Однако действительное значение отличается от истинно­го на погрешность, присущую данному образцовому прибору. Различают абсолютную, относительную и приведенную погрешности измерения.

Абсолютной погрешностью измерительного прибора называют разность между его показанием и действительным значением измеряемой величины.

Относительной погрешностью называют отношение абсолютной погрешности к действительному зна­чению измеряемой величины, выраженное в относительных единицах или в процентах.

Приведенная погрешность – это отношение наибольшей абсолютной погрешности к верхнему пределу измерений прибора.

По значению приведенной погрешности измерительные приборы делят на группы по классу точности. Класс точности – обобщенная характеристика измерительного прибора, определяющая пре­делы допустимых погрешностей. Для электроизмерительных приборов класс точности указывается в вида числа, равного максимальной допустимой приведенной погреш­ности (в %). Согласно ГОСТ 1845-59, электроизмерительные приборы делят на 8 классов по точности: 0,05; 0,1; 0,2 – образцовые приборы; 0,5; 1,0 – лабораторные; 1,5; 2,5; 4,0 – технические приборы. Об­разцовые приборы считаются более высокого класса точности по отношению к лабораторным и техническим приборам, а лабораторные – по отношению к техническим.

Определим по классу точности прибора его погрешности. Если прибор (например, вольтметр с верхним пределом измерений 150 В) имеет класс точности 1,0, то основная приведенная погрешность не превышает 1 %. Максимальная абсолютную по­грешность, которую может иметь прибор в любой точке шкалы не будет превышать clip_image002 Относительная же погрешность при этом зависит от измеряемого напряжения.

Если этим вольтметром можно измерять напряжение 10 В, то относительная погрешность может составить clip_image004. Если же измерять напряжение 100 В, то относительная погрешность может составить

clip_image006 .

Из этого примера видно, что для повышения точности измерения прибор надо выбирать так, чтобы, во-первых, он имел более высокий класс точности, и чтобы, во-вторых, предел измерения был бли­зок к значению измеряемой величины. Это означает, что для получения возможно меньших относительных ошибок, надо добиваться достаточно большого отклонения стрелки (желательно, чтобы использовалась последняя треть шкалы).

С другой стороны, для того чтобы добиться большой точности при измерении прибором более низкого класса, необходимо выбрать прибор с наименьшим возможным диапазоном измерений.

Следует правильно формулировать предложение, в котором дана количественная оценка по­грешности. Например: "Измерение тока с абсолютной погрешностью до 1 мА", "Измерение то­ка с относительной погрешностью до 1 %. (Выражение "Измерение тока с точностью до 1 мА" неправильно).

kursak.net

Метрология

Тема 1. Единицы физических величин. Система СИ.

Задача 1.

Скорость автомобиля на прямолинейном участке трассы составила 169 км/ч. Перевести в единицы измерения системы СИ.

Решение:

169 км/ч=169000м/ч=169000м/3600с=46,94 м/с,

Ответ: скорость автомобиля составила 46,94 м/с.

Задача 2.

Во многих странах Европы температура измеряется по шкале Фаренгейта. Если в Париже 68ºF, а в Запорожье 21,5ºС то где теплее?

Решение:

tºF=9/5tºC+3221,5·9/5+32=21,5·1,8+32=70,7ºF,

Ответ: по шкале Фаренгейта температура в Запорожье равна 70,7ºF что на 2,7ºF выше чем в Париже, следовательно в Запорожье теплее.

Задача 3.

Определить в единицах СИ среднюю скорость (v) объекта, если за время t=310м/с им пройдено расстояние S=15см.

Решение:

t=310м/с = 0,31с; S=15см=0,15м; v =S/t=0,15/0,31=0,4838м/с

Ответ: Средняя скорость объекта v=0,4838м/с.

Тема 2.Расчет погрешностей и округление результатов измерений. Оценка величины систематической погрешности ( введение поправок )

Задача 1.

Определить относительную и приведённую погрешности вольтметра, если его диапазон измерений от -12В до +12В. Значение поверяемой отметки шкалы х=7В. Действительное значение измеряемой величины У=7,978

Решение:

Относительная погрешность вольтметра

Приведённая погрешность вольтметра

где xN –нормирующее значение ( Верхний предел измерений )

Ответ:δ=13,86% ; γ=8,08%;

δ=14%; γ=8%;

Задача 2.

Определить погрешность при измерении тока амперметром класса точности z=1,5 если номинальный ток амперметра 30А , а показания амперметра х=11А

Решение:

Погрешность амперметра 30/100·1,5=±0,45А

30·0,015=±0,45А

Поэтому при показаниях амперметра х=11А

Погрешность Δх=±0,45А точнее как и в любой точке измерений.

Ответ: Δх=±0,45А

Задача 3.

Показания вольтметра с диапазоном измерений от 0В до 200В равных=154В. Образцовый вольтметр , включенный паралельно , показывает у= 147В. Определить относительную и приведенню погрешность рабочего вольтметра.

Решение:

Относительная погрешность рабочего вольтметра

Приведення погрешность рабочего вольтметра

Отивет: δ=4,76%; γ=3,5%.

Задача 4.

Найти относительную погрешность вольтметра класса точности Z=2

с диапазоном измерений от 0 до 120В. В точке шкалы х=47В.

Решение:

Абсолютная погрешность вольтметра

Δх= 120·0,02%=2,4В

Относительная погрешность

Ответ:δ=5,1%.

Тема 3. Методі и методики измерений. Расчёт надёжности приборов.

Задача 1.

Определить пригодность к дальнейшему применению рабочего вольтметра класса точности 1,75 с диапазоном измерений от 0 до 300В , если при непосредственном изменении его показаний с показаниями образцового вольтметра были получены следующие данные

Рабочий В

60

120

180

240

300

Образцовый В

61

119,3

180,8

239,4

299,06

Решение:

По условию приведённая погрешность γ=1,75%

Δmax= 61 - 60 = 1B

Ответ: Рабочий вольтметр пригоден к дальнейшему использованию.

Задача 2.

При поверке вольтметра класса точности с пределом точности 100В

Были получены следующие показания образцового и поверяемого вольтметров

Поверяемый В

10

20

30

40

50

60

70

80

90

100

Образцовый В

11,5

21,36

31,25

41,15

51,07

61

70,94

80,9

90,83

100,79

Оценить годность прибора. В случае брака указать точку, из-за которой принято данное решение.

Решение:

По условию приведённая погрешность γ=1% , что составляет 1В от придела измерений 100В. Следовательно вольтметр непригоден так как в точках 10; 20; 30; 40; 50- погрешность допускает допустимую.

Задача 3.

Определить относительную погрешность в начале шкалы на У=75 делениях для прибора класса 0,5 имеющего шкалу х=800 делений. На сколько эта погрешность больше погрешности на сотом делении шкалы прибора?

Решение:

По условию приведённая погрешность γ=0,5%

деления

Ответ: Погрешность в точке75 на 1,33% больше чем в точке 100.

Задача 4.

При контроле метрологических параметров деформационных (пружинных) манометров со шкалой на 450 делений , смещение стрелки от постукивания по корпусу должно оцениватся с погрешностьюне превышающей 0,1 цены деления шкалы. Составте эту погрешность отчёта с допустимой погрешностью для манометра класса 0,01.

Решение:

По условию приведённая погрешность γ=0,01%

Допустимая погрешность Δ=0,045 деления

Ответ:

Погрешность 0,1 цены деления превышает погрешность Δ=0,045 деления.

Задача 5.

Класс точности весов 0,01 определить допускаемую погрешность этих весов в начале ( 1деление ) в середине шкалы, если весы рассчитаны на 450 делений

Решение:

По условию приведённая погрешность γ=0,01%

Ответ:

Допускаемая погрешность Δ=0,045 делениям. Действует по всей длинне шкалы как в начале шкалы как и в середине так и в концешкалы.

Задача 6.

При измерении напряжения вольтметром класса точности 0,5 с верхним диапазоном измерений х=300В его показания были У= 155В. Определить относительную погрешность вольтметра.

Решение:

По условию приведенная погрешность γ=0,5%

Ответ:

Относительная погрешность вольтметра δ=0,97%

Задача 7.

Амперметр класса точности 1,5 имеет диапазон измерений от 0 до 300А. Определить допускаемую а бсолютную и относительные погрешности, если стрелка амперметра остановилась на делении шкалы против цифры У=155А.

Решение:

По условию γ=1,5%

абсолютная погрешность

относительная погрешность

Ответ:

Абсолютная погрешность амперметра Δ=4,5А

Относительная погрешность амперметра δ=2,9%

Задача 8.

При определении класса точности ваттметра рассчитанного на 750Вт получили следующие данные:

50Вт – при мощности 50 Вт;

96Вт – при мощности 100Вт;

204Вт – при мощности 200Вт;

398Вт – при мощности 400Вт;

746Вт – при мощности 750Вт;

Какой класс точности прибора ?

Решение:

Класс точности показывает максимально возможную погрешность прибора, выраженную в процентах от наибольшего значения величины, следовательно приведённой погрешности

Произведём погрешность прибора

Абсолютная погрешность при классе 0,53 составляет:

Так как приведённая погрешность действует по всей длинне шкалы то в любой точке шкалы погрешность не должна превышать Δ=4Вт

На шкале таких точек три:

750Вт - 746Вт = 4Вт

100Вт – 96Вт = 4Вт

200Вт – 204Вт = -4Вт

Также не существует класса точности 0,53

Поэтому ваттметру можно присвоить класс точности 1,0.

На шкале измерительного прибора маркеруют значение класса точности в виде числа , указывающего нормированное значение погрешности.

Выраженное в процентах , оно может иметь значения:

6;5;4;2,5;1,5;1,0;0,5;0,2;0,1;0,05;0,02;0,01;0,005 и т.д.

7

studfiles.net

Konspekt_KSR_1_klassy_tochnosti

Конспект КСР1 (п. 8)

КЛАССЫ ТОЧНОСТИ ИЗМЕРИТЕЛЬНЫХ ПРИБОРОВ

Класс точности измерительного прибора — это характеристика, определяемая нормированными предельными значениями погрешности средства измерений.

Способы нормирования допускаемых погрешностей и обозначения классов точности средств измерений установлены ГОСТ 8.401-80.

Способы нормирования допускаемых погрешностей:

- по абсолютной погрешности,

- по относительной погрешности,

- по приведенной погрешности – по длине или верхнему пределу шкалы прибора.

Обозначения классов точности измерительных приборов:

- арабскими цифрами без условных знаков - класс точности определяется пределами приведённой погрешности, в качестве нормирующего значения используется наибольший по модулю из пределов измерений.

- арабскими цифрами с галочкой, то класс точности определяется пределами приведённой погрешности, но в качестве нормирующего значения используется длина шкалы.

По приведенной погрешности приборы делятся на классы: 0,05; 0,1; 0,2; 0,5; 1,0; 1,5; 2,5; 4,0.

Приборы класса точности 0,05; 0,1; 0,2; 0,5 применяются для точных лабораторных измерений и называются прецизионными.

В технике применяются приборы классов 1,0; 1,5: 2,5 и 4,0 (технические). 

Если на шкале такого обозначения нет, то данный прибор внеклассный, то есть его приведенная погрешность превышает 4%.

- арабскими цифрами в кружке - класс точности определяется пределами относительной погрешности.

- латинскими буквами, то класс точности определяется пределами абсолютной погрешности.

Когда на приборе класс точности не указан, абсолютная погрешность принимается равной половине цены наименьшего деления. При считывании показаний со шкалы нецелесообразно стараться определить доли деления, так как результат измерения от этого не станет точнее.

Пример: вольтметр, диапазон измерений 0 — 30 В, класс точности 1,0 определяет, указанная погрешность при положении стрелки в любом месте шкалы не превышает 0,3 В. Соответственно, среднее квадратичное отклонение s прибора составляет 0,1 В.

Относительная погрешность результата зависит от значения напряжения, становясь недопустимо высокой для малых напряжений. При измерении напряжения 0,5 В погрешность составит 60 %. Такой прибор не годится для исследования процессов, в которых напряжение меняется на 0,1 — 0,5 В.

studfiles.net